Fundamentos del disco duro

Visto en: http://www.monografias.com/trabajos37/composicion-disco-duro/composicion-disco-duro.shtml

Introducción

El disco duro es medio de almacenamiento de información no removible y de muy alta capacidad(a diferencia de los diskettes), aunque también trabaja mediante principiosmagnéticos.

Por estas propiedades los discos duros son usados en las computadoras como dispositivos donde se graba el sistema operativo, los programas de aplicaciones y los archivos que se generan durante el trabajo cotidiano, también actúan como memoria temporal durante los procesoscomplejos en ambientes de trabajo avanzados (por ejemplo en Windows u OS/2), e inclusive como almacén de datos que se obtienen de Internet, de un CD-ROM o de cualquier otra fuente externa.

La presente monografía trata como está formado el disco duro, así como detalles interesantes de su operación.

Historia

Aún antes de la aparición de las computadoras electrónicas comerciales (1951), ya era una necesidad de almacenamiento masivo. A mediados del siglo XIX, se empleaban tarjetas perforadas como recipiente de la información que se introducía en las calculadoras mecánicas y otras máquinas de la época. En la década de los 40’s del presente siglo, el tubo de vacío llegó a emplearse para almacenamiento de datos, aprovechando su capacidad de conmutación y, por lo tanto, la posibilidad de guardar en ellos dígitos binarios y a principios de los 50’s, las cintas magnéticas empezaron a reemplazar a las tarjetas perforadas.

Poco tiempo después aparecieron los tambores magnéticos y en 1957 como componente de las RAMAC 350 de IBM, se lanzó al mercado el primer disco duro. Se requerían entonces 50 discos de 60 cms de diámetro cada uno, para almacenar apenas 5 mb de información en aquélla época era más que suficiente para satisfacer las necesidades de las empresas.

Durante décadas los discos duros siguieron siendo enormes y costosas unidades, sin embargo a inicios de los 80’s con la revolución de las computadoras personales, se realizo un cambio trascendente en tales dispositivos. Los primeros discos duros que se utilizaron en computadoras personales eran de 5,25 pulgadas (extraordinariamente pequeños considerando los diseños previos), con una capacidad de almacenamiento de 5 a 10 mb, mas que suficiente para ese entonces.

Cuando IBM lanzó al mercado la PC/Xt de IBM, aunque los discos duros no se consideraban un componente estándar en las computadoras personales (usaban diskettes para grabar el sistema operativo, programas de aplicación y archivos), ofreció la posibilidad de incluir como añadido un disco duro de 10 mb

Esta opción era muy costosa pero a la vez muy atractiva para las empresas, pues la misma capacidad habría costado en años anteriores varias decenas de miles de dólares.

Por tanto los discos duros han mostrado una evolución muy rápida que se expresa en el incremento de la capacidad de almacenamiento, mayorvelocidad de acceso a los datos y reducción de su tamaño, cabe resaltar que el principio de operación sigue siendo lo mismo pero ya perfeccionado.

Unidad de disco duro:

Los discos duros se presentan recubiertos de una capa magnética delgada, habitualmente de óxido de hierro, y se dividen en unos círculos concéntricos cilindros (coincidentes con las pistas de los disquetes), que empiezan en la parte exterior del disco (primer cilindro) y terminan en la parte interior (último). Asimismo estos cilindros se dividen en sectores, cuyo número esta determinado por el tipo de disco y su formato, siendo todos ellos de un tamaño fijo en cualquier disco. Cilindros como sectores se identifican con una serie de números que se les asignan, empezando por el 1, pues el numero 0 de cada cilindro se reserva para propósitos de identificación mas que para almacenamiento de datos. Estos, escritos/leídos en el disco, deben ajustarse al tamaño fijado del almacenamiento de los sectores. Habitualmente, los sistemas de disco duro contienen más de una unidad en su interior, por lo que el número de caras puede ser más de 2. Estas se identifican con un número, siendo el 0 para la primera. En general suorganización es igual a los disquetes. La capacidad del disco resulta de multiplicar el número de caras por el de pistas por cara y por el de sectores por pista, al total por el número de bytes por sector.

Para escribir, la cabeza se sitúa sobre la celda a grabar y se hace pasar por ella un pulso de corriente, lo cual crea un campo magnético en la superficie. Dependiendo del sentido de la corriente, así será la polaridad de la celda. ara leer, se mide la corriente inducida por el campo magnético de la celda. Es decir que al pasar sobre una zona detectará un campo magnético que según se encuentre magnetizada en un sentido u otro, indicará si en esa posición hay almacenado un 0 o un 1. En el caso de la escritura el proceso es el inverso, la cabeza recibe una corriente que provoca un campo magnético, el cual pone la posición sobre la que se encuentre la cabeza en 0 o en 1 dependiendo del valor del campo magnético provocado por dicha corriente.

Los componentes físicos de una unidad de disco duro son:

LOS DISCOS (Platters)

Están elaborados de compuestos de vidriocerámica o aluminio finalmente pulidos y revestidos por ambos lados con una capa muy delgada de una aleación metálica. Los discos están unidos a un eje y un motor que los hace guiar a una velocidad constante entre las 3600 y 7200 RPM. Convencionalmente los discos duros están compuestos por varios platos, es decir varios discos de material magnético montados sobre un eje central. Estos discos normalmente tienen dos caras que pueden usarse para el almacenamiento de datos, si bien suele reservarse una para almacenarinformación de control.

LAS CABEZAS (Heads)

Están ensambladas en pila y son las responsables de la lectura y la escritura de los datos en los discos. La mayoría de los discos duros incluyen una cabeza Lectura/Escritura a cada lado del disco, sin embargo algunos discos de alto desempeño tienen dos o más cabezas sobre cada superficie, de manera que cada cabeza atiende la mitad del disco reduciendo la distancia del desplazamiento radial. Las cabezas de Lectura/Escritura no tocan el disco cuando este esta girando a toda velocidad; por el contrario, flotan sobre una capa de aire extremadamente delgada(10 millonésima de pulgada). Esto reduce el desgaste en la superficie del disco durante la operación normal, cualquier polvo o impureza en el aire puede dañar suavemente las cabezas o el medio. Su funcionamiento consiste en una bobina de hilo que se acciona según el campo magnético que detecte sobre el soporte magnético, produciendo una pequeña corriente que es detectada y amplificada por la electrónica de la unidad de disco.

EL EJE

Es la parte del disco duro que actúa como soporte, sobre el cual están montados y giran los platos del disco.

«ACTUADOR» (actuator)

Es un motor que mueve la estructura que contiene las cabezas de lectura entre el centro y el borde externo de los discos. Un «actuador» usa la fuerzade un electromagneto empujado contra magnetos fijos para mover las cabezas a través del disco. La controladora manda más corriente a través del electromagneto para mover las cabezas cerca del borde del disco. En caso de una perdida de poder, un resorte mueve la cabeza nuevamente hacia el centro del disco sobre una zona donde no se guardan datos. Dado que todas las cabezas están unidas al mismo «rotor» ellas se mueven al unísono. Mientras que lógicamente la capacidad de un disco duro puede ser medida según los siguientes parámetros:

Cilindros (cylinders)

El par de pistas en lados opuestos del disco se llama cilindro. Si el HD contiene múltiples discos (sean n), un cilindro incluye todos los pares de pistas directamente uno encima de otra (2n pistas). Los HD normalmente tienen una cabeza a cada lado del disco. Dado que las cabezas de Lectura/Escritura están alineadas unas con otras, la controladora puede escribir en todas las pistas del cilindro sin mover el rotor. Como resultado los HD de múltiples discos se desempeñan levemente más rápido que los HD de un solo disco.

Pistas (tracks)

Un disco está dividido en delgados círculos concéntricos llamados pistas. Las cabezas se mueven entre la pista más externa ó pista cero a la mas interna. Es la trayectoria circular trazada a través de la superficie circular del plato de un disco por la cabeza de lectura / escritura. Cada pista está formada por uno o más Cluster.

Sectores (sectors)

Un byte es la unidad útil más pequeña en términos de memoria. Los HD almacenan los datos en pedazos gruesos llamados sectores. La mayoría de los HD usan sectores de 512 bytes. La controladora del H D determina el tamaño de un sector en el momento en que el disco es formateado. Algunosmodelos de HD le permiten especificar el tamaño de un sector. Cada pista del disco esta dividida en 1 ó 2 sectores dado que las pistas exteriores son más grandes que las interiores, las exteriores contienen mas sectores.

Distribución de un disco duro

Cluster

Es una agrupación de sectores, su tamaño depende de la capacidad del disco. La siguiente tabla nos muestra esta relación.

  

Tamaño del Drive MB

Tipo de FAT

bits

Sectores por Cluster

Tamaño del Cluster Kb

0 –15

12

8

4

16-127

16

4

2

128-255

16

8

4

256-511

16

16

8

512-1023

16

32

16

1024-2048

16

64

32

Los Platos Magnéticos

Platos es donde se almacena la información en un disco duro, son de un material rígido, en contraste con la delgada capa plástica de los disquetes Dichos platos son de aluminio, con un diámetro que se ha ido reduciendo gradualmente, e la par que se he incrementado la capacidad de almacenamiento: han pasado de 5.25 pulgadas en las primeras unidades a 3.5 de los discos más usuales en maquines de escritorio y e un tamaño de 2.5 ó 1.8 pulgadas para las maquinas portátiles.

Si bien el aluminio ha sido durante mucho tiempo el material mas utilizado, conforme ha ido avanzando la tecnología de construcción de cabezas magnéticas, ha mostrado serias limitaciones, sobre todo en le producción de superficies cada vez más planas y perfectamente lisas Ante este situación, los fabricantes de discos duros están experimentando con nuevosmateriales, como el vidrio y componentes cerámicos de alta tecnología. Por ahora, el problema de estos materiales alternos es su alto costo
Para almacenar información, la superficie de los platos es recubierta con un material capaz de grabar por tiempo indefinido campos magnéticos de niveles apreciables; en este especto, los fabricantes han utilizado dos 
técnicas: le primera (utilizado desde los discos duros más antiguos) consiste en un depósito de partículas de óxido de hierro sumergidas en una solución adhesiva, misma que se aplica en el centro de los platos girando e alta velocidad, de tal manera que porfuerza centrífuga el material se distribuye de manera uniforme sobre toda le superficie. Con esto se consigue une capa de aproximadamente 70- 80 micras de grueso, con un acabado café opaco. 
Los discos más nuevos utilizan una técnica mas avanzada, conocida como «de capa delgada», pues es más fina, a la vez que más consistente y uniforme que la anterior,
permitiendo mayores densidades de grabación y una mayor durabilidad. Físicamente, pueden reconocerse por su acabado en espejo. La profundidad de la capa magnética que almacena los 
datos es de unas 3-8 micras de espesor, dependiendo de la tecnología empleada para aplicar esta capa Estos tipos de platos son los que mas se utilizan en los discos actuales.

Cabezas de lectura/escritura

Existen diferentes tipos de cabeza de lectura/ escritura. Entre las primeras, se cuentan a la cabeza monolítica de ferrita y a la cabeza construida con un block, también de ferrita. Un avance posterior, se dio con el uso de cabezas compuestas, las cuales se fabrican con una mezcla de un material no magnético al que se le agrega una pequeña porción de ferrita.

Las cabezas son el componente mas costoso de un disco duro, y sus características ejercen gran impacto en el diseño y rendimiento del disco duro. No obstante su alto costo, mantienen un diseño básico y un objetivo relativamente simple: 
una cabeza es una pieza de material magnético, cuya forma es parecida a una letra «C» con una pequeña abertura (gap); una bobina de alambre se enrolla en este núcleo para construir un electromagneto; de hecho, su 
estructura es básicamente la misma que la de las cabezas empleadas en las grabadoras de audio convencionales. 
Para la escritura en el disco, la corriente que circula por la bobina crea un 
campo magnético a través del gap, el cual magnetiza a la cubierta del disco bajo la cabeza. Para leer desde el disco, la cabeza sensa un pulso de corriente electrónica que corre por la bobina cuando la abertura pasa por arriba de una reversión de flujo en el disco.

Estructura de una cabeza magnética

Gracias a las mejoras tecnológicas, en la actualidad los bits son empaquetados mas densamente, por lo que el espacio necesario para su grabación se ha ido reduciendo. El bit de información almacenado, da origen a la señal producida por la cabeza cuando esta lo lee; sin embargo, el reducido tamaño del bit ha implicado un mayor reto, pues las cabezas deben flotar aún más cerca del medio de almacenamiento, con el propósito de incrementar la amplitud de la señal. 
El siguiente paso en la 
evolución de las cabezas, fue el diseño de tipo MIG (Metal In Gap o Metal Insertado), en cuyo gap se le introduce una delgada capa metálica para aumentar la capacidad magnética. Esta tecnología también ha sido superada en nuestros días, siendo sustituida por la
de cabezas de película delgada, que se describirá a continuación. 
Actualmente, muchas unidades emplean cabezas de película delgada, cuya característica es que los elementos estructurales se depositan en un sustrato, de manera muy semejante a como son fabricados los microchips La tecnología de película delgada es un valioso recurso para los fabricantes de cabezas, ya que éstas pueden fabricarse con un menor tamaño y se les puede aplicar un mejor 
control de calidad
La mas reciente tecnología de cabezas, llamada «magneto-resistiva» (MR), está diseñada para lograr 
medios de almacenamiento de muy altas densidades de grabación, en el rango de 1 a 2 billones de bits por pulgada cuadrada (BPSI), en comparación con las densidades de menos de 200 millones BPSI ofrecidas por las tecnologías de cabeza tradicionales. 
A diferencia de estas (que consisten en pequeños electromagnetos de 
inducción), la tecnología MR emplea una forma distinta de realizar la lectura, basándose en un material especial cuya resistencia eléctrica se modifica ante la presencia de un campo magnético.

Una pequeña franja de material magnetoresistivo que se deposita en la estructura de la cabeza, pasa por arriba de los patrones magnéticos del disco, sensa la fuerza del campo magnético y produce pulsos eléctricos que corresponden a las reversiones de flujo. Como este mecanismo no puede utilizarse para escribir, un elemento de escritura inductivo de película delgada es depositado a lo largo de uno de los lados de dicha franja. 
La tecnología de la cabeza magneto-resistiva comenzó a aparecer en 1994, y dada su gran aceptación fue incorporada, un año después, en el diseño de discos duros. Asimismo, debido en gran parte al uso de las cabezas MR acopladas con canales de lectura PRML (Manifestación Máxima de Respuesta Parcial, técnica de 
codificación y almacenamiento de datos), hizo posible que, utilizando un solo plato de almacenamiento, un drive de 1 gb o mas de capacidad fuese realidad. 
Esta tecnología ha seguido evolucionando; de hecho, se han diseñado cabezas magneto-resistivas gigantes, las cuales se utilizan en discos duros de muy alta capacidad (arriba de 6 GB). Este nuevo estándar, desarrollado por IBM, promete ser la piedra angular de los discos duros en un futuro cercano, de modo que puedan seguir satisfaciendo la creciente 
demanda de capacidad de almacenamiento de los usuarios de computadoraspersonales.

Brazo del actuador y bobina de voz

Para mover las cabezas, es necesario un mecanismo que las desplace lateralmente a través del radio de los platos mientras estos giran; para llevar a cabo este movimiento, se han utilizado dos métodos distintos: un motor lineal y la bobina de voz. 
Los discos mas antiguos se apoyaban en un mecanismo muy similar al utilizado en las unidades de diskette para el desplazamiento de cabezas; esto es, un motor de pasos conectado a un brazo encargado del movimiento del conjunto. Este 
método resultó satisfactorio en unidades con un numero limitado de sectores, ya que en estos casos los tracks que se grababan eran lo suficientemente anchos como para que las ligeras fallas en elposicionamiento de la cabeza (prácticamente inevitables por la misma naturaleza de su movimiento) no afectaran de manera determinante el procesode grabación y recuperación de datos. 
Sin embargo, este método de desplazamiento tenía una inconveniencia: si por cualquier razón el mecanismo se atoraba ligeramente y perdía su posición de referencia, de ahí en adelante todas las lecturas o escrituras se efectuarían en forma incorrecta. Pero además, el mismo calentamiento de los discos por su operación normal, era suficiente para desalinear las cabezas en relación con los tracks en los platos; o algún 
cambio en la postura de la unidad podía afectar el proceso de recuperación de información (precisamente, en estos discos había que tomar precauciones como formatearlos exactamente en la posición en que fueran a trabajar, y no había que moverlos mientras estuvieran funcionando). Por estas razones, el método del motor de pasos pronto fue desechado y sustituido por las modernas bobinas de voz. 
Este método funciona de manera muy similar a como trabajan las bocinas convencionales: una bobina sumergida en un poderoso campo magnético, y a través de la cual circula una corriente cuidadosamente calculada produciendo así una fuerza que desplaza a las cabezas magnéticas sobre la superficie de los platos. 
La gran ventaja de este método en comparación con el anterior, es que se trata de un 
sistema dinámico realimentado, donde en los mismos tracks en que se almacenan los datos también se graban ciertas marcas que le sirven de referencia al sistema de posicionamiento de cabezas; de este modo, conforme se lee o escribe un archivo, el circuito de movimiento de brazo detecta si la posición de las cabezas es la adecuada, y en caso contrario envía ligeras variaciones a la corriente aplicada en la bobina de voz, corrigiendo así la diferencia.

Gracias a este método, los discos duros modernos pueden utilizarse en cualquier posición, absorber vibraciones externas e incluso golpes de varios «G» de intensidad (G, fuerza con que nos atrae la gravedad hacia el piso), sin interferir en la lectura y escritura de datos. Y no sólo ello, gracias a su característica de auto corrección, es posible grabar tracks mucho más finos que con el método anterior, lo que finalmente se traduce en discos de mayor capacidad con un numero reducido de platos.

Partes que componen una bobina de voz típica:

1.-Brazo actuador, donde van montadas las cabezas magnéticas

2.-Bobina de desplazamiento

3.-Conjunto de imanes que producen al campo magnético necesario para el desplazamiento de la bobina.


Por lo que se refiere al brazo del actuador, tan sólo se trata de una palanca metálica en cuyo extremo se encuentran las cabezas magnéticas, sostenidas con un resorte que las impulsa fuertemente contra la superficie de los platos. Todas las cabezas están fijas en el brazo del actuador, por lo que si una de ellas se desplaza, digamos al track 250, todas las demás cabezas efectúan exactamente el mismo movimiento. Es por esta razón que en discos duros no se habla de tracks, sino de «cilindros», ya que todas las cabezas leyendo al mismo tiempo una determinada posición nos remiten precisamente a dicha forma.

 

Interacción plato-cabeza

Sabemos por lo mencionado anteriormente que por la acción del resorte en el brazo del actuador, las cabezas magnéticas se encuentran en estrecho contacto con la superficie de los discos; también sabemos que los platos en los discos duros giran con una velocidad considerable (entre 3,600 y 10,000 RPM, dependiendo del modelo específico de disco). Entonces, si la cabeza está en contacto con la superficie del disco y éste gira rápidamente, cabría suponer que la fricción entre ambos tarde o temprano provocaría la destrucción de alguno de estos elementos. ¿Cómo se hace para que esto no suceda? 
Hay una 
propiedad dinámica de los fluidos (aire o líquidos), según la cual «no importa la rapidez con se desplace un fluido por una tubería, la velocidad relativa de las partículas adyacentes a las paredes de dicho tubo será prácticamente igual a cero». Dicho en otras palabras, si el aire corre con una velocidad muy alta sobre la superficie de un plato de metal, por fricción entre las moléculas del gas y la superficie del plato, las partículas de aire que se encuentra inmediatamente tenderán a «pegarse» a él. Esta situación se repite exactamente en la situación contraria: 
una cámara de aire estático con unos platos girando con gran velocidad. En resumen, sucede que junto con los platos, en su superficie, se mantiene girando una fina capa de aire. 
Este pequeño «colchón de aire» es aprovechado por las cabezas magnéticas, que al poseer una forma aerodinámica obligan a esta pequeña capa a comprimirse debajo de ellas, produciendo la suficiente fuerza para elevar al conjunto unas cuantas micras sobre la superficie del plato evitando así el contacto entre ambos elementos y, por lo tanto, impidiendo la fricción.

Gracias a este fenómeno, los discos pueden durar varios años de trabajo continuo, al final de cuya vida útil las cabezas llegan a «viajar» miles de kilómetros sobre la superficie de los platos ¿Pero que sucede cuando se apaga el sistema y los platos dejan de girar? Al no existir el colchón de aire que se forma entre cabeza y plato, estos elementos entran en contacto (en lenguaje coloquial las cabezas «aterrizan»); si esto sucede en una porción del disco donde se tiene información grabada, su integridad puede ser afectada. Para evitar este problema, los discos duros más antiguos tenían fijada una posición de «estacionado» de cabezas (se daba de alta en el Setup) , y antes de apagar su sistema los usuarios debían tener la precaución de dar una orden de «estacionar cabezas» (el famoso comando PARK); entonces el conjunto se desplazaba hacia dicha posición sin datos, con lo que ya podía ser apagada la máquina. 
En la actualidad, los fabricantes de discos duros han incorporado un sistema automático que lleva a cabo exactamente esa misma 
función al momento del apagado .Para ello, se aprovecha la fuerza centrípeta que se genera en un disco Q, recuerda que en los tradicionales discos de audio de acetato, cuando la aguja ya estaba muy gastada. mediante una palanca que asegura al brazo del actuador en dicha posición; de este modo una vez que se ha apagado un disco duro, las cabezas quedan firmemente aseguradas en una posición donde no afectan la información grabada.

Electrónica integrada

Uno de los adelantos que contribuyeron a popularizar los discos duros de tecnología IDE, es que dentro de la estructura de la misma unidad se encuentra la circuitería electrónica necesaria para llevar a cabo una gran cantidad de funciones distintas 
-Controlar el flujo de datos desde y hacia el 
microprocesador
– Codificar y decodificar los datos que van a ser grabados en los platos. 
-Controlar cuidadosamente la velocidad de giro de los discos. 
-Controlar la corriente que circula por la bobina de voz, lo que a so vez se traduce en un posicionamiento exacto de las cabezas de lectura/ escritura. 
– Verificar que todos los elementos de la unidad funcionen correctamente, mediante un microcontrolador dedicado a esa función. 
– Soportar un bloque de 
memoria que sirve como cache de datos en los procesos de lectora y escritora de información (esto en casi todos los discos modernos).

Debido a que prácticamente todas las funciones principales del manejo del disco duro se han incorporado en esta sección electrónica, la interface entre la unidad y la tarjeta madre es muy sencilla, al grado que se puede incluir en una tarjeta de bajo costo o (el caso mas común en la actualidad) en la misma tarjeta madre. Esto evita que los consumidores tengan que pagar el alto costo que implican las controladoras dedicadas, como sería el caso en las unidades con interface SCSI.

MEDIDAS QUE DESCRIBEN EL DESEMPEÑO DE UN HD

Los fabricantes de HD miden la velocidad en términos de tiempo de acceso, tiempo de búsqueda, latencia y transferencia. Estas medidas también aparecen en las advertencias, comparaciones y en las especificaciones. Tiempo de acceso (access time) Termino frecuentemente usado en discusiones de desempeño, es el intervalo de tiempo entre el momento en que un drive recibe un requerimiento por datos, y el momento en que un drive empieza a despachar el dato. El tiempo de acceso de un HD es una combinación de tres factores:

  1- Tiempo de Búsqueda (seek time)

Es el tiempo que le toma a las cabezas de Lectura/Escritura moverse desde su posición actual hasta la pista donde esta localizada la información deseada. Como la pista deseada puede estar localizada en el otro lado del disco o en una pista adyacente, el tiempo de búsqueda variara en cada búsqueda. En la actualidad, el tiempo promedio de búsqueda para cualquier búsqueda arbitraria es igual al tiempo requerido para mirar a través de la tercera parte de las pistas. Los HD de la actualidad tienen tiempos de búsqueda pista a pista tan cortos como 2 milisegundos y tiempos promedios de búsqueda menores a 10 milisegundos y tiempo máximo de búsqueda (viaje completo entre la pista más interna y la más externa) cercano a 15 milisegundos .

2- Latencia (latency)

Cada pista en un HD contiene múltiples sectores una vez que la cabeza de Lectura/Escritura encuentra la pista correcta, las cabezas permanecen en el lugar e inactivas hasta que el sector pasa por debajo de ellas. Este tiempo de espera se llama latencia. La latencia promedio es igual al tiempo que le toma al disco hacer media revolución y es igual en aquellos drivers que giran a la misma velocidad. Algunos de los modelos más rápidos de la actualidad tienen discos que giran a 10000 RPM o más reduciendo la latencia.

3- Command Overhead

Tiempo que le toma a la controladora procesar un
requerimiento de datos. Este incluye determinar la localización física del dato en el disco correcto, direccionar al «actuador» para mover el rotor a la pista correcta, leer el dato, redireccionarlo al computador.

Transferencia

Los HD también son evaluados por su transferencia, la cual generalmente se refiere al tiempo en la cual los datos pueden ser leídos o escritos en el drive, el cual es afectado por la velocidad de los discos, la densidad de los bits de datos y el tiempo de acceso. La mayoría de los HD actuales incluyen una cantidad pequeña de RAM que es usada como cache o almacenamiento temporal. Dado que los computadores y los HD se comunican por un busde Entrada/Salida, el tiempo de transferencia actual entre ellos esta limitado por el máximo tiempo de transferencia del bus, el cual en la mayoría de los casos es mucho más lento que el tiempo de transferencia del drive.

COMO FUNCIONA UN DISCO DURO.

1. Una caja metálica hermética protege los componentes internos de las partículas de polvo; que podrían obstruir la estrecha separación entre las cabezas de lectura/escritura y los discos, además de provocar el fallo de la unidad a causa de la apertura de un surco en el revestimiento magnético de un disco. 2. En la parte inferior de la unidad, una placa de circuito impreso, conocida también como placa lógica, recibe comandos del controlador de la unidad, que a su vez es controlado por el sistema operativo. La placa lógica convierte estos comandos en fluctuaciones de tensión que obligan al actuador de las cabezas a mover estas a lo largo de las superficies de los discos. La placa también se asegura de que el eje giratorio que mueve los discos de vueltas a una velocidad constante y de que la placa le indique a las cabezas de la unidad en que momento deben leer y escribir en el disco. En un disco IDE (Electrónica de Unidades Integradas), el controlador de disco forma parte de la placa lógica. 3. Un eje giratorio o rotor conectado a un motor eléctrico hacen que los discos revestidos magnéticamente giren a varios miles de vueltas por minuto. El número de discos y la composición del material magnético que lo s recubre determinan la capacidad de la unidad. Generalmente los discos actuales están recubiertos de una aleación de aproximadamente la trimillonésima parte del grosor de una pulgada. 4. Un actuador de las cabezas empuja y tira del grupo de brazos de las cabezas de lectura/escritura a lo largo de las superficies de los platos con suma precisión. Alinea las cabezas con las pistas que forman círculos concéntricos sobre la superficie de los discos. 5. Las cabezas de lectura/escritura unidas a los extremos de los brazos móviles se deslizan a la vez a lo largo de las superficies de los discos giratorios del HD. Las cabezas escriben en los discos los datos procedentes del controlador de disco alineando las partículas magnéticas sobre las superficies de los discos; las cabezas leen los datos mediante la detección de las polaridades de las partículas ya alineadas. 6. Cuando el usuario o su software le indican al sistema operativo que lea o escriba un archivo, el sistema operativo ordena al controlador del HD que mueva las cabezas de lectura y escritura a la tabla de asignación de archivos de la unidad, o FAT en DOS (VFAT en Windows 95). El sistema operativo lee la FAT para determinar en que Cluster del disco comienza un arc
hivo
 preexistente, o que zonas del disco están disponibles para albergar un nuevo archivo. 7. Un único archivo puede diseminarse entre cientos de Cluster independientes dispersos a lo largo de varios discos. El sistema operativo almacena el comienzo de un archivo en los primeros Cluster que encuentra enumerados como libres en la FAT. Esta mantiene un registro encadenado de los Cluster utilizados por un archivo y cada enlace de la cadena conduce al siguiente Cluster que contiene otra parte mas del archivo. Una vez que los datos de la FAT han pasado de nuevo al sistema operativo a través del sistema electrónico de la unidad y del controlador del HD, el sistema operativo da instrucciones a la unidad para que omita la operación de las cabezas de lectura/escritura a lo largo de la superficie de los discos, leyendo o escribiendo los Cluster sobre los discos que giran después de las cabezas. Después de escribir un nuevo archivo en el disco, el sistema operativo vuelve a enviar las cabezas de lectura/escritura a la FAT, donde elabora una lista de todos los Cluster del archivo.

INTERFAZ ENHANCED INTEGRATED DRIVE ELECTRONICS (EIDE)

La norma IDE fue desarrollada por Western Digital y Compaq Computers a partir de una interfaz de disco del AT original que IBM creó en 1984. Desde entonces se convirtió en la interfaz más utilizada en el entorno PC. A pesar de esto IDE presenta unas limitaciones debido a su dependencia de la BIOS y al diseño del que parte. Hace poco las limitaciones en el tamaño de los HD y la velocidad de transferencia no daban problemas, pero como se han mejorado los procesadores y han salido programas más complejos, ya se notan.

Entonces se hizo un mejoramiento de las normas IDE y surgió Enhanced IDE, por cierto la nomenclatura de estas normas son similares a las de SCSI. Así, partiendo de la interfaz establecido de IDE llamado ATA (AT Attachment) surge ATA-2 y ATAPI (ATA Packed Interfaz), que permite conectar unidades de CD-ROM a controladores ATA.

ATA-2 se encuentra en proceso de normalización, permite alcanzar 16.6 Mbps (según el tipo de periférico que prestan las E/S); según su esquema de translación de direcciones se pueden encontrar dos métodos en ATA-2:

– Mediante el tradicional sistema de cilindros/Cabezas/Sectores (CHS). De esta forma se transforman los parámetros de CHS de la Bios en los de la unidad. Como ventaja tiene su sencillez.

– Mediante LBA(Logical Block Address). Consiste en transformar los parámetros CHS en una dirección de 28 bits que puede ser usada por el sistema Operativo, los drives de los dispositivos, etc.

En ambos casos se necesita una BIOS extra para permitir superar la limitación de 528 Mb.

 Ventajas De Enhanced IDE:

*Máximo cuatro dispositivos conectados

*Soporta CD-ROM y cinta

*Transparencia de hasta 16.6 Mbps

*Capacidad máxima de 8.4 Gbytes

Velocidades en ATA-2

*11.1 con PIO Modo3

*13.3 Mbps con DMA Modo1

*16.6 Mbps con PIO Modo4

DEFINICIONES DE TERMINOS

ATA (AT Attachment), dispositivo de AT. Es el dispositivo IDE que más se usa en la actualidad, por los que a veces se confunde con el propio IDE. Originalmente se creó para un bus ISA de 16 bits.

ATAPI (ATA PACKET INTAERFACE), Interfaz de paquete ATA. Es una extensión del protocolo ATA para conseguir una serie de comandos yregistros que controlen el funcionamiento de un CD-ROM, es fácilmente adaptable para una cinta de Backup.

DMA (DIRECT MEMORY ACCESS), Acceso directo a memoria. Componente integrado en un periférico que libera al procesador en la tarea de transferir datos entre dispositivos y memoria. El acceso se realiza por bloque de datos.

PIO (PROGRAMABLE INPUT/OUTPUT), Entrada/Salida programable. Componente encargado de ejecutar las instrucciones dirigidas a losperiféricos. A diferencia de la DMA requiere atención del procesador para su funcionamiento. Como contrapartida es mucho más sencillo y barato.

Controladoras

La interface es la conexión entre el mecanismo de la unidad de disco y el bus del sistema. Define la forma en que las señales pasan entre el bus del sistema y el disco duro. En el caso del disco, se denomina controladora o tarjeta controladora, y se encarga no sólo de transmitir y transformar la información que parte de y llega al disco, sino también de seleccionar la unidad a la que se quiere acceder, del formato, y de todas las órdenes de bajo nivel en general. La controladora a veces se encuentra dentro de la placa madre.

Se encuentran gobernados por una controladora y un determinado interface que puede ser:

· ST506: Es un interface a nivel de dispositivo; el primer interface utilizado en los PC’s. Proporciona un valor máximo de transferencia de datos de menos de 1 Mbyte por segundo. Actualmente esta desfasado y ya no hay modelos de disco duro con este tipo de interface.

· ESDI: Es un interface a nivel de dispositivo diseñado como un sucesor del ST506 pero con un valor más alto de transferencia de datos (entre 1,25 y 2.5 Mbytes por segundo).Ya ha dejado de utilizarse este interface y es difícil de encontrar.

· IDE: Es un interface a nivel de sistema que cumple la norma ANSI de acoplamiento a los AT y que usa una variación sobre el bus de expansión del AT (por eso también llamados discos tipo AT) para conectar una unidad de disco a la CPU, con un valor máximo de transferencia de 4 Mbytes por segundo. En principio, IDE era un término genérico para cualquier interface a nivel de sistema. La especificación inicial de este interface está mal definida. Es más rápida que los antigu
os interfaces ST506 y ESDI pero con la desaparición de los ATs este interface desaparecerá para dejar paso al SCSI y el SCSI-2.

Íntimamente relacionado con el IDE, tenemos lo que se conoce como ATA, concepto que define un conjunto de normas que deben cumplir los dispositivos. Años atrás la compañía Western Digital introdujo el standard E-IDE (Enhanced IDE), que mejoraba latecnología superando el límite de acceso a particiones mayores de 528 Mb. y se definió ATAPI, normas para la implementación de lectores de CD-ROM y unidades de cinta con interfaz IDE. E-IDE se basa en el conjunto de especificaciones ATA-2. Como contrapartida comercial a E-IDE, la empresa Seagate presento el sistema FAST-ATA-2, basado principalmente en las normas ATA-2. En cualquier caso a los discos que sean o bien E-IDE o FAST-ATA, se les sigue aplicando la denominación IDE como referencia. Para romper la barrera de los 528 Mb. las nuevas unidades IDE proponen varias soluciones:

* El CHS es una traducción entre los parámetros que la BIOS contiene de cilindros, cabezas y sectores (ligeramente incongruentes) y los incluidos en el software de sólo lectura (Firmware) que incorpora la unidad de disco.

* El LBA (dirección lógica de bloque), estriba en traducir la información CHS en una dirección de 28 bits manejables por el sistema operativo, para el controlador de dispositivo y para la interfaz de la unidad.

Debido a la dificultad que entraña la implemetación de la compatibilidad LBA en BIOS, muchos de los ordenadores personales de fabricación más reciente continúan ofreciendo únicamente compatibilidad con CHS. El techo de la capacidad que permite las solución CHS se sitúa en los 8,4 Gb, que por el momento parecen suficientes.

· SCSI: Es un interface a nivel de sistema, diseñado para aplicaciones de propósito general, que permite que se conecten hasta siete dispositivos a un único controlador. Usa una conexión paralela de 8 bits que consigue un valor máximo de transferencia de 5 Mbytes por segundo. Actualmente se puede oír hablar también de SCSI-2 que no es más que una versión actualizada y mejorada de este interface. Es el interface con más futuro, si bien tiene problemas de compatibilidad entre las diferentes opciones de controladoras, discos duros,impresoras, unidades de CD-ROM y demás dispositivos que usan este interface debido a la falta de un estándar verdaderamente sólido.

Las mejoras del SCSI-2 sobre el SCSI tradicional son el aumento de la velocidad a través del bus, desde 5 Mhz a 10 Mhz, duplicando de esta forma el caudal de datos. Además se aumenta el ancho del bus de 8 a 16 bits, doblando también el flujo de datos. Actualmente se ha logrado el ancho de 32 bits, consiguiendo velocidades teóricas de hasta 40 Mbytes / seg.

Los interfaces IDE y SCSI llevan la electrónica del controlador en el disco, por lo que el controlador realmente no suele ser mas que un adaptador principal para conectar el disco al PC. Como se puede ver unos son interfaces a nivel de dispositivo y otros a nivel de sistema, la diferencia entre ambos es:

INTERFACE A NIVEL DE DISPOSITIVO: Es un interface que usa un controlador externo para conectar discos al PC. Entre otrasfunciones, el controlador convierte la ristra de datos del disco en datos paralelos para el bus del microprocesador principal del sistema. ST506 y ESDI son interfaces a nivel de dispositivo.

INTERFACE A NIVEL DE SISTEMA: Es una conexión entre el disco duro y su sistema principal que pone funciones de control y separación de datos sobre el propio disco (y no en el controlador externo), SCSI e IDE son interfaces a nivel de sistema.

< /span>

Distribución de la Información : Grabación y Acceso.

Para grabar información en la superficie, se siguen una serie de códigos, que transforman un patrón de bits en una secuencia de celdas con diferentes estados de magnetización.

Procesos de grabación

· GCR (Group Coding Recording – Codificación de grupo de grabación) Es un proceso de almacenamiento en el que los bits se empaquetan como grupos y son almacenados bajo un determinado código.

· ZBR (Zone Bit Recording) Es un proceso de almacenamiento que coloca más sectores sobre las pistas exteriores del disco que son más largas, pero mantienen un valor constante de rotación. Esta diseñado para colocar más datos sobre el disco, sólo puede usarse con interfaces inteligentes.

Proceso de Codificación

· FM: Es la codificación más sencilla, consiste en la grabación de un cambio de flujo para cada uno, y el omitir el cambio de flujo para cada cero. Este procedimiento se puede realizar con una electrónica de control relativamente simple, pero tiene el inconveniente de que cada bit de datos consume dos cambios de flujo, limitando mucho la capacidad del disco.

· MFM (Modified Frequency Modulation – Modulación de frecuencia modificada) Método de codificación magnética de la información que crea una correspondencia 1 a 1 entre los bits de datos y transiciones de flujo (cambios magnéticos) sobre un disco. Emplea una menor densidad de almacenamiento y presenta una velocidad más baja de transferencia que el RLL.

Esta tecnología es usada en los discos flexibles y en los primeros discos duros. Cada bit de datos es almacenado sobre una región física lo suficientemente grande para contener 2 posibles posiciones 00, 01 ó 10. Entre cada 2 bits de datos hay un bit que se llama de «reloj» y que se usa para validar las lecturas, así como para sincronizarlas. Este bit hace que sea uno cuando está situado entre 2 bits de datos a cero y se hace cero cuando está situado entre cualquier otra combinación de bits de datos. Así se hace imposible que se puedan leer más de 3 bits consecutivos con un valor de cero, o mas de un bit seguido a uno. Esto es cierto para todas las informaciones almacenadas en el disco excepto para las áreas de control del mismo cuyas marcas de comienzo de pista, sector y datos tienen 4 bits consecutivos a cero en su «adress mark». Evidentemente, estos sistemas, aunque fiables, son unos grandes consumidores de espacio ya que emplean prácticamente la mitad del espacio en bits de reloj.

· RLL: (Run Length Limited – Longitud recorrido limitado) Método de codificar la información magnéticamente que usa GCR para almacenar bloques en vez de bits individuales de datos. Permite densidades mayores de almacenamiento y velocidades mas altas de transferencia que MFM. En la práctic
a, permite incrementar en un 50% la capacidad de un disco respecto al sistema de grabación MFM. Los métodos de grabación RLL utilizan un conjunto complejo de reglas para determinar el patrón de pulsos para cada bit basado en los valores de los bits precedentes. Este sistema se puede clasificar dependiendo de la distancia máxima y mínima de silencios entre dos pulsos, por ejemplo; el RLL 2,7 tiene una distancia mínima entre pulsos de 2 silencios y una máxima de 7.

Datos de control del disco

Es casi imposible evitar impurezas en la superficie magnética del disco, esto provoca que existan determinados sectores que son defectuosos.

En los antiguos discos estos sectores venían apuntados por el control de calidad del fabricante del disco. En el formateo de bajo nivel, el usuario debería indicárselos al programa formateador. En los modernos, las direcciones de estos sectores se graban en pistas especiales o se reconocen durante el formateo a bajo nivel del disco, estos sectores se saltan o bien son sustituidos por otros que están en zonas protegidas. Es allí donde se guardan las tablas que marcan los sectores defectuosos y sus sustituciones. Esto disminuye el acceso al disco duro, pero teniendo en cuenta que el porcentaje de sectores defectuosos es mínimo, prácticamente no tiene importancia.

Hay que tener en cuenta que no toda la información que se encuentra en la superficie de los discos son datos, existen zonas donde se almacena información de control.

Entre la información que se encuentran dentro de un sector:

· Numero de sector y cilindro

· El ECC (Error Correction Code) DATA.

· La zona de datos

· Zonas de separación entre zonas o entre pistas

También existen pistas extra donde se recogen otras informaciones como:

· Pistas «servo» donde se guardan cambios de flujo según un esquema determinado, para la sincronización al pulso de datos, necesario para la correcta compresión de las informaciones en RLL.

· Pistas de reserva, normalmente usadas como reserva de sectores defectuosos.

· Pistas de aparcamiento, usadas para retirar los cabezales evitando así choques del cabezal con la superficie con datos ante vibraciones o golpes de la unidad.

Tiempos de acceso, Velocidades y su medición

Existen una serie de Factores de Velocidad relacionados con los discos duros que son necesarios conocer para comprender su funcionamiento y sus diferencias.

· Tiempo de búsqueda de pista a pista : intervalo de tiempo necesario para desplazar la cabeza de lectura y escritura desde una pista a otra adyacente.

· Tiempo medio de acceso : tiempo que tarda, como media, para desplazarse la cabeza a la posición actual. Este tiempo promedio para acceder a una pista arbitraria es equivalente al tiempo necesario para desplazarse sobre 1/3 de las pistas del disco duro. El antiguo IBM PC/XT utilizaba discos de 80 a 110 milisegundos, mientras que los AT usaban discos de 28 a 40 milisegundos, y los actuales sistemas 386, 486 y PENTIUMÒ
 usan discos de menos de 20 milisegundos.

· Velocidad de Rotación: Número de vueltas por minuto (RPM) que da el disco.

· Latencia Promedio : Es el promedio de tiempo para que el disco una vez en la pista correcta encuentre el sector deseado, es decir el tiempo que tarda el disco en dar media vuelta. Velocidad de transferencia : velocidad a la que los datos (bits) pueden transferirse desde el disco a la unidad central. Depende esencialmente de dos factores : la velocidad de rotación y la densidad de almacenamiento de los datos en una pista

3600 rpm = 1 revolución cada 60/3600 segundos (16,66 milisegundos)

Si calculamos el tiempo de ½ vuelta –> Latencia Promedio 8,33 milisegundos

Una comparativa entre un disquete y un disco duro de todos estos Factores mencionados anteriormente sería:

T.Pista

T.MAcceso

Rotación

Latencia

V.Transfrencia

FD 360k

HD AT 30

6-12 mls

8-10 mls

93 mls

40-28 mls

300 rpm

3600 rpm

100 mls

8,3 mls

125-250 Kb / seg

1-5 Mb / seg

El tiempo de búsqueda depende del tamaño de la unidad (2″, 3″½, 5″¼), del número de pistas por pulgada (que a su vez depende de factores como el tamaño de los dominios magnéticos) y de la velocidad y la precisión de los engranajes del cabezal. La latencia depende de la velocidad de rotación y equivale a la mitad del tiempo que tarda el disco en describir un giro completo. El rendimiento total también depende de la disposición de los dominios magnéticos, uso de ZBR.

Para mejorar el tiempo de acceso se reduce esa latencia acelerando la rotación del disco o velocidad de eje. Hace unos años todos los discos duros giraban a la misma velocidad unos 3600 rpm, la latencia resultante era de 8,3 milisegundos. Hoy las unidades de disco más rápidas para PC giran a 5400 rpm (un 50% más rápidas) y por tanto su latencia es de 5,6 milisegundos. Algunos discos siguen usando los 3600 rpm para consumir menos energía.

RPM

1 Vuelta cada

Latencia

3600

16,66 mseg.

8,33 mseg.

4500

13,33 mseg.

6,66 mseg.

5400

11,11 mseg.

5,55 mseg.

7200

8,33 mseg.

4,16 mseg.

10000

6,00 mseg.

3,00 mseg.

El trabajar a velocidades elevadas plantea varios problemas: El primer problema es que a esta velocidad la disipación del calor se concierte en un problema. El segundo es que exige a usar nuevos motores articulados pro fluidos para los engranajes, los actualesmotores de cojinetes no pueden alcanzar estas velocidades sin una reducción drástica de fiabilidad, se quemarían demasiado rápido.

Además de todas estas características de velocidades y tiempos de acceso de los discos duros existen una serie de técnicas que nos permiten aminorar los accesos a disco así como acelerar las transferencias de datos entre el sistema y el dispositivo en cuestión. Una de las técnicas más conocidas en la informática para hacer esto es la del uso de memorias intermedias, buffers o cachés.

· Buffer De Pista: Es una memoria incluida en la electrónica de las unidades de disco, que almacena el contenido de una pista completa. Así cuando se hace una petición de lectura de una pista, esta se puede leer de una sola vez, enviando la información a la CPU, sin necesidad de interleaving.

· Cachés De Disco: Pueden estar dentro del propio disco duro, en tarjetas especiales o bien a través de programas usar la memoriacentral. La gestión de esta memoria es completamente invisible y consiste en almacenar en ella los datos más pedidos por la CPU y retirar de ella aquellos no solicitados en un determinado tiempo. Se usan para descargar al sistema de las lentas tareas de escritura en disco y aumentar la velocidad.

Aparte de la velocidad del disco duro y de la controladora la forma en que se transfieren los datos de ésta a la memoria deciden también la velocidad del sistema. Se pueden emplear 4 métodos:

· Programed I/O (Pio Mode): La transferencia de datos se desarrolla a través de los diferentes puerto I/O de la controladora que también sirven para la transmisión de comandos (IN / OUT). La tasa de transferencia está limitada por los valores del bus PC, y por el rendimiento de la CPU. Se pueden lograr transferencias de 3 a 4 Mbytes. Con el modo de transferencia PIO 4, que es el método de acceso que actualmente utilizan los discos más modernos, es posible llegar a tasas de transferencia de 16,6 Mbytes / seg.

· Memory mapped I/O: La CPU puede recoger los datos de la controladora de forma más rápida, si los deja en una zona de memoria fija, ya que entonces se puede realizar la transferencia de los datos a una zona de memoria del programa correspondiente con laintroducción MOV, más rápida que los accesos con IN y OUT. El valor teórico máximo es de 8 Mbytes / seg.

· DMA: Es la transferencia de datos desde el disco a la memoria evitando pasar por la CPU. La ventaja de usar el DMA es que se libera al procesador para trabajar en otras tareas mientras las transferencias de datos se realizan por otro lado. El DMA además de ser inflexible es lento, no se puede pasar de más de 2 Mb. por segundo.

· Bus Master DMA: En esta técnica la controladora del disco duro desconecta la controladora del bus y transfiere los datos con la ayuda de un cotrolador Bus Master DMA con control propio. Así se pueden alcanzar velocidades de 8 a 16 Mb. por segundo.

Últimas Tecnologías y Tendencias

La aceleración del los nuevos disco IDE se basan en dos métodos:

· Con el control de flujo a través de IORDY (en referencia a la línea de bus ATA » Canal de e/s preparado» se acelera el control PIO. Gracias al control de flujo, la parte electrónica de la unidad de disco puede regular las funciones de transferencia de datos delmicroprocesador, y el disco duro puede comunicarse con el bus a mayor velocidad de manera fiable. El standard PIO modo 3 tiene una transferencia teórica máxima de 11,1 Mbytes / seg., el nuevo PIO modo 4 de 16,6 Mbytes, y el futuro PIO modo 5 promete hasta 33 Mbytes / seg.

· El otro método alternativo denominado FAST Multiword DMA con el controlador DMA (acceso directo a memoria) sustituye al procesador en el gobierno de las transferencias de datos entre el disco duro y la memoria del sistema. SSF define que el Modo 1 de transferencias DMA soporte velocidades internas de hasta 13,3 Mbps, lo que es equiparable a los resultados del control PIO en modo 3.

Los disco duros de hoy (especialmente los de mañana) se adentran en complicadas tecnologías y campos científicos (mecánica cuántica, aerodinámica, y elevadas velocidades de rotación). La combinación de estas tecnologías permite que la capacidad de los discos duros aumente cerca de un 60 % cada año; cada cinco años se multiplica por diez su capacidad. Los analistas esperan que este ritmo de crecimiento no se mantenga hasta finales de siglo.

Para mejorar las posibilidades del disco duro hay que acercar los cabezales a la superficie del disco. Los cabezales pueden escribir y leer dominios magnéticos menores, cuanto menor sean éstos mayor densidad de datos posible de cada plato. Pero cuanto más cerca estén los cabezales, mayor será la probabilidad de colisión con la superficie. Una solución es recubrir el plato con materiales protectores, rediseñar las características aerodinámicas de los cabezales, etc. Además el paso de una mayor cantidad de datos por los cabezales exige perfeccionar los componentes electrónicos, e incluso puede obligar a ampliar la memoria caché integrada . Además no hay que olvidar que los dominios menores son estables a las temperaturas de funcionamiento normales. Y todo esto a un precio competitivo.

Ejemplo de nuevos diseños es la tecnología MR (Magnetoresistiva) de IBM que utiliza nuevos materiales. Usa cabezales con mejor relación señal /ruido que los de tipo inductivo, separando los de lectura de los de escritura. Pueden trabajar con dominios magnéticos menores aumentando la densidad de almacenamiento. Además son menos sensibles al aumento de la velocidad permitiendo velocidades de rotación mayores. Sus inconvenientes son su dificultad y alto precio de fabricación, y su sensibilidad ante posibles cargas eléctricas. Se investiga en una mejora llamada GMR (MR Gigante) que emplea el efecto túnel de electrones de la mecánica cuántica.

Nuevas tecnologías van encaminadas a potenciar la resistencia de la superficie magnética de los platos con materiales antiadherentes derivados del carbono. Esto junto con las técnicas de cabezales de grabación en proximidad, los TRI-PAD (cabezales trimorfos) y los de contacto virtual permiten acercar los cabezales hasta incluso entrar ocasionalmente en contacto con la superficie del plato.

A través de la técnica de carga dinámica del cabezal se garantiza la distancia de vuelo del cabezal respecto a la superficie, usando zonas deseguridad y cierres inerciales en las cabezas. Así no se necesita una preparación especial de la superficie del plato.

Estructura Lógica De Los Discos Duros

Lo que interrelaciona los discos duros con los disquetes, es su estructura, que se resumen en diferentes funciones del BIOS, que sirven entre otras cosas para el acceso a los mismos.

En primer lugar, internamente los discos duros se pueden dividir en varios volúmenes homogéneos. Dentro de cada volumen se encuentran una estructura que bajo el sistema operativo del Ms-Dos, sería la siguiente:

Sector de Arranque.

Primera tabla de localización de archivos (FAT).

Una o más copias de la FAT.

Directorio Raíz (eventualmente con etiqueta de volumen).

Zona de datos para archivos y subdirectorios.

Como se muestra en el cuadro anterior, cada volumen se divide en diferentes zonas que por una parte acogen las diferentes estructurasde datos del sistema de archivos, y por otra los diferentes archivos y subdirectorios. En dicho cuadro no se han hecho referencia al tamaño de las diferentes estructuras de datos y zonas. Pero no es posible describirlas, ya que se adaptan individualmente al tamaño del volumen correspondiente

· El Sector de Arranque : Al formatear un volumen, el sector de arranque se crea siempre como primer sect
or del volumen, para que sea fácil de localizar por el DOS. En él se encuentra información acerca del tamaño, de la estructura del volumen y sobre todo del BOOTSTRAP-LOADER, mediante el cual se puede arrancar el PC desde el DOS. A ésta parte se le llama sector de arranque (BOOT).

· La Tabla de Asignación de Ficheros (File Allocation Table) (FAT) : Si el DOS quiere crear nuevos archivos, o ampliar archivos existentes, ha de saber qué sectores del volumen correspondiente quedan libres, Estas informaciones las toma la llamada FAT. Cada entrada a esta tabla se corresponde con un número determinado de sectores, que son adyacentes lógicamente en el volumen. Cada uno de estos grupos de sectores se llama Cluster. El tamaño de las diferentes entradas de esta tabla en las primeras versiones del DOS era de 12 bits. con lo que se podían gestionar hasta 4.096 Clusters, correspondiente a una capacidad aproximada de 8 Mbytes. En vista del problema que surgió al aparecer discos duros de capacidades más elevadas, se amplió el tamaño a 16 bits., permitiendo el direccionamiento de un máximo de 65.535 Clusters. Actualmente se está creando FAT’s de hasta 32 bits, para discos duros capaces de almacenar Gigas de información.

· Una o más copias de la FAT : El DOS permite a un programa de formateo crear no sólo una, sino varias copias idénticas de la FAT. Si el DOS encuentra uno de estos medios, cuida todas las copias de la FAT simultáneamente, así que guarda allí los nuevos clusters ocupados o liberados al crear o borrar archivos. Esto ofrece la ventaja de que se puede sustituir la FAT primaria en caso de defecto por una de sus copias, para evitar la pérdida de datos.

· El directorio Raíz : La cantidad máxima de entradas en el directorio raíz se limita por su tamaño, que se fija en el sector de arranque. Ya que el directorio raíz representa una estructura de datos estática, que no crece si se guardan más y más archivos o subdirectorios. De ahí que, dependiendo del tamaño, bien un disco duro o bien de volumen, se selecciona el tamaño del directorio raíz en relación al volumen.

· La Zona de Datos : Es la parte del disco duro en la que se almacena los datos de un archivo. Esta zona depende en casi su totalidad de las interrelaciones entre las estructuras de datos que forman el sistema de archivos del DOS, y del camino que se lleva desde la FAT hacia los diferentes sectores de un archivo.

Conclusión

La tecnología de los discos duros modernos es considerablemente mas avanzada que la de los primeros discos que se utilizaron en la plataforma PC; sin embargo, el principio básico de funcionamiento de estas unidades sigue siendo prácticamente el mismo. 
Viendo a futuro, podemos esperar que la capacidad de los discos siga aumentando a la par que disminuya el 
precio por mb de almacenamiento; y mas adelante, cuando los límites impuestos por la física impidan el desarrollo posterior de los discos magnéticos, seguramente se habrán desarrollado nuevas y sofisticadas tecnologías de almacenamiento masivo de información, que nos permitirán satisfacer las crecientes necesidades informáticas.

 

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *